Large Crystal Nuclear Emulsion for Cosmic-ray Radiography

<u>Akira NISHIO</u>, Ken-ichi KUWABARA, Yuta MANABE, Kuno MITSUAKI, Nobuko KITAGAWA, Kunihiro MORISHIMA Nagoya University F-Lab

ICMaSS 2017

Investigation of Pyramids using cosmic-ray

Nuclear emulsion detector

Development of nuclear emulsion in Nagoya University

chemicals

Control crystal size and shape

Remove extra ion

Sensitivity and Stability control

Crystal Size control (Large crystal)

$G.D = 33.6 \pm 2.6$ $G.D = 42.0 \pm 2.9$ $G.D = 46.6 \pm 3.1$ $G.D = (34.1 \pm 3.8)$

Sensitivity : Grain Density(G.D) = number of developed crystals/100 μ m

Achievements

Sensitivity for MIP is maximum when Crystal Size is 300 ~ 500nm

- Contrast of truck is improved (vision: high speed track selection in large field of view)
- Characteristic of latent image fading ← report new result in this talk

Latent image fading

is phenomenon that once recorded track as latent

~100MeV electron truck images are fading before chemical development.

after storage for 60days in 30°C (RH30%)

Observation period is limited

- Experiment(1): Crystal Size dependence of Latent image fading
- Experiment(2): Chemical dependence of Latent image fading

- Experiment(1): Crystal Size dependence of Latent image fading
- Experiment(2): Chemical dependence of Latent image fading

(1):Crystal Size dependence of Latent image fading

Experimental method

- 1. Production of emulsion gel which crystal size different
- 2. Pouring the emulsion gel on base
- 3. Humidity conditioning of the emulsion film
- Put the conditioned sample in aluminum laminated bag and vacuum pack(to keep humidity constant)
- 5. Electron exposure (~100MeV)
- 6. Storage in constant-temperature bath
- 7. Development
- 8. Grain Density evaluation

Condition
Crystal Size : 200,350,800nm
Volume occupancy AgBr : 30%
Humidity : RH60%
Temperature : 32°C

(1):Crystal Size dependence of Latent image fading

<Initial G.D>
800nm : 350nm: 200nm = 22.8 : 34.6 : 32 [/100µm]

- Experiment(1): Crystal Size dependence of Latent image fading
- Experiment(2): Chemical dependence of Latent image fading

(2):Chemical dependence of Latent image fading Experimental method

- 1. Production of emulsion gel which chemical amount different
- 2. Pouring the emulsion gel on base
- 3. Humidity conditioning of the emulsion film
- Put the conditioned sample in aluminum laminated bag and vacuum pack(to keep humidity constant)
- 5. Electron exposure (~100MeV)
- 6. Storage in constant-temperature bath
- 7. Development
- 8. Grain Density evaluation

Condition	
Crystal Size : 350nm	
Volume occupancy AgBr : 40%	
Humidity : RH50%	
Temperature : 35°C	

(2):Chemical dependence of Latent image fading

 We found two factor which improve latent image fading in experiment

① Fading is improved by large crystal size emulsion (Condition:32°C,RH60%,200,350,800nm crystal)

② Fading is improved dramatically by <u>no addition of Chemical B</u> (Condition : $35^{\circ}C,RH50\%,350nm$ crystal, Chem B=×1,×1/2,×0)

"Thank you for your kind attention"