暗黒物質の直接探索における地球との散乱効果について

arXiv:1611.05453v1

Signatures of Earth-scattering in the direct detection of Dark Matter

神戸大学

矢ケ部

2016/11/21~11/22

16 Nov 2016

Signatures of Earth-scattering in the direct detection of Dark Matter

Bradley J. Kavanagh,^a Riccardo Catena^b and Chris Kouvaris^c

^aLPTHE, CNRS, UMR 7589, 4 Place Jussieu, F-75252, Paris, France
^bChalmers University of Technology, Department of Physics, SE-412 96 Göteborg, Sweden
^cCP³-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark

E-mail: bkavanagh@lpthe.jussieu.fr, catena@chalmers.se, kouvaris@cp3.sdu.dk

今回お話するのは、 DM particle が、地球と散乱する過程を考慮した場合の 速度分布と計数率への影響について

single scatter を仮定、electron との相互作用は考えない。(本当は考えるべき)

NT. 1 C

2016/11/21~11/22

Attenuation

$$f_{\mathcal{A}}(\mathbf{v}, \cdot) = f_{0}(\mathbf{v}) \exp\left[-\sum_{i}^{\text{species}} i(V) \overline{n}_{i} d_{\text{eff},i}(\cos \cdot)\right] = f_{0}(\mathbf{v}) \exp\left[-\sum_{i}^{\text{species}} \frac{d_{\text{eff},i}(\cos \cdot)}{i(V)}\right].$$

$$e_{\text{eff},i}(\cos \cdot) = \frac{1}{\overline{n}_{i}} \int_{AB} i(\mathbf{r}) dI = 2 \int_{R_{\oplus}}^{R_{\oplus}} \frac{n_{i}(r)}{\overline{n}_{i}} \frac{r \, dr}{\sqrt{r^{2} - R_{\oplus}^{2} \sin^{2}}}$$

$$\overline{n}_{i} = \frac{1}{R} \int_{0}^{R_{\oplus}} n_{i}(r) \, dr$$

以下の元素で地球の組成を仮定

Element	A	m_A [GeV]	$n [\mathrm{cm}^{-3}]$	Core	Mantle
Oxygen	16	14.9	3.45×10^{22}	0.0 -	0.440
Silicon	28	26.1	1.77×10^{22}	0.06	0.210
Magnesium	24	22.3	1.17×10^{22}	0.0	0.228
Iron	56	52.1	$6.11 imes 10^{22}$	0.855	0.0626
Calcium	40	37.2	7.94×10^{20}	0.0	0.0253
Sodium	23	21.4	1.47×10^{20}	0.0	0.0027
Sulphur	32	29.8	2.33×10^{21}	0.019	0.00025
Aluminium	27	25.1	1.09×10^{21}	0.0 -	0.0235

2016/11/21~11/22

d

 θ

Deflection

2016/11/21~11/22

■ γ vs. v の2次元のパラメータ空間で見るとこうなる

Modulation

- 入射角によって、信号数の比がどうのように変わるか γが小さい → ほとんど地球の直径を通り抜けないといけないので、 全体的に、suppress される
- γが大きい → 真横や、頭上からDM が来るのに対応しているので、
 反応率は変わらない

Daily modulation

Operator $\hat{\mathcal{O}}_1$ - m = 0.5 GeV

γ から時間に焼き直す

 $=\cos^{-1}(\langle \hat{\mathbf{v}} \rangle \cdot \hat{\mathbf{r}}_{det})$

- $=\cos^{-1}\left(-\cos t\sin -\sin t\cos t\right)$
- 0h, 12h で示してあるが、著者のHP に行けば、0h-24h の動画を観れる
- ・ 北半球は、スペクトルが enhance される領域が大きい
 - 一方で、南半球の狭い領域では attenuation の効果が大きく、 suppress される

Daily modulation

世界の異なる緯度を持つ
 4地点での、
 反応数の変化 vs. 時間

北半球では、
 正味の反応数は増加するが、
 変化率は小さい

南半球では、attenuation による効果が大きいため、 12h 付近で大きく反応数が 小さくなる

•

赤道に近づくほど、 attenuation と deflection の効果がバランスして、 スペクトルが複雑になる

Conclusion

- 地球とDM の散乱は、速さ分布の強度を減らす この効果は、緯度39°S – 49°S で最も大きく、南半球の検出器において modulation の強度は 10 – 30 %程度、1日単位で変化する
- 北半球においては、地球-DM 散乱は、DM の速さ分布の強度を増加させるが modulation は小さく 1-10 % 程度
- 異なる DM 原子核相互作用は、地球との散乱において、異なる方向にDM を deflect する
- 0.5 GeV 付近は、制限もゆるくて、かつこれから近い未来に探索される 可能性が高いので、これらの効果を調べる事ができるはず
- これらの study ができれば、local DM density や、反応断面積を 独立に決定する事ができる
- また、スペクトルの形の違いで、DMの ID ができるかもしれない

Backup

100000

2016/11/21~11/22