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Abstract. Direct detection experiments search for the interactions of Dark Matter (DM)
particles with nuclei in terrestrial detectors. But if these interactions are su�ciently strong,
DM particles may scatter in the Earth, a↵ecting their distribution in the lab. We present
a new analytic calculation of this ‘Earth-scattering’ e↵ect in the regime where DM parti-
cles scatter at most once before reaching the detector. We perform the calculation self-
consistently, taking into account not only those particles which are scattered away from the
detector, but also those particles which are deflected towards the detector. Taking into ac-
count a realistic model of the Earth and allowing for a range of DM-nucleon interactions, we
present the EarthShadow code, which we make publicly available, for calculating the DM
velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-
scattering reduces the direct detection rate at certain detector locations while increasing the
rate in others. The Earth’s rotation induces a daily modulation in the rate, which we find to
be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction.
These distinctive signatures would allow us to unambiguously detect DM and perhaps even
identify its interactions in regions of the parameter space within the reach of current and
future experiments.
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where J is the spin of the target nucleus, v the DM-nucleus relative velocity, q the momentum
transfer, v

?2
T = v

2 � q

2
/(4µ

2
T ), and µT the DM-nucleus reduced mass. The eight “DM-

response functions” R

⌧⌧ 0
k depend on q

2
/m

2
N , v

?2
T , and the isoscalar and isovector coupling

constants c

⌧
j . We list them in the Appendix. The eight nuclear response functions W

⌧⌧ 0
k are

quadratic in matrix elements of nuclear charges and currents generated in the scattering
of DM by nuclei, and must be computed numerically. For the elements considered in this
investigation (see Tab. 2) we adopt the nuclear response functions found in Ref. [48] using the
NuShellX@MSU shell-model code [55] and phenomenological nucleon-nucleon interactions [56].
For concreteness, we will assume isoscalar interactions (cp = c

n = c

0
/2) throughout this work.

3 Earth-scattering calculation

With a formalism for DM-nucleus interactions in hand, we now present the main calculation
of the Earth-scattering e↵ect. If DM particles scatter with nuclei in the Earth as they
travel underground, they will emerge near the surface of the Earth with a di↵erent energy
and direction. The energy and direction of DM particles is encoded in the local velocity
distribution f(v), meaning that the e↵ect of Earth-scattering will be to induce perturbations
in f(v), which will vary depending on the position of the detector on the Earth’s surface.
We will therefore write the perturbed velocity distribution as f̃(v, �), where the angle �

describes the position of the detector with respect to the average DM velocity. A more
detailed definition of � is given in Sec. 3.1 and illustrated in Fig. 1.

In order to calculate this perturbed DM velocity distribution, we assume that the DM
scatters at most once, which we will refer to as the ‘single scatter’ approximation. This is
roughly equivalent to assuming R� . �, where R� is the Earth’s radius and � is the typical
mean free path of the DM particles. In this case, the perturbed velocity distribution contains
two contributions:

f̃(v, �) = fA(v, �) + fD(v, �) . (3.1)

Here, fA is the attenuated population of particles: those particles whose trajectories pass
through the detector and which have not scattered before reaching the detector. Instead, fD

is the deflected population of particles: those whose trajectories did not initially pass through
the detector but which have scattered towards the detector during Earth-crossing.

In our analysis, we neglect gravitational focusing of DM particles by the Earth, which
may also lead to percent-level distortions in the local velocity distribution at low v [57, 58].
We also assume that the time scale over which a DM particle crosses the Earth is negli-
gible compared with the Earth’s rotational period; a DM particle with a typical speed of
⇠ 220 km s�1 will take only O(30 seconds) to cross the Earth. This means that we can as-
sume that the detector has a fixed position in calculating the perturbed velocity distribution.

With these caveats, we now proceed to describe the free velocity distribution f0(v),
which one would expect in the absence of Earth-scattering. We then calculate the two
contributions to the perturbed distribution shown in Eq. 3.1: attenuation and deflection.

3.1 Free velocity distribution

We assume that the free DM velocity distribution is described by the Standard Halo Model
(SHM) [59], which has the following analytic form in the laboratory frame:

f0(v) =
1

N

exp


�(v � hv�i)2

2�

2
v

�
⇥ ⇥(vesc � |v � hv�i|) . (3.2)
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larger target masses and lower energy thresholds may be
able to distinguish the di↵erent operators.

We have demonstrated that directional information
may be the only means of discriminating those operators
which couple to ~v? from those which do not. Though
this study is far from exhaustive (neglecting, for exam-
ple, interference terms between di↵erent operators), we
have highlighted the importance of directional detection
for probing the particle physics nature of Dark Matter.

During the preparation of this manuscript, a pre-print
also discussing the directional rates in NREFT was made
available online (Ref. [69]). In that paper, the author con-
siders the directional spectra and relative contributions
of di↵erent NREFT operators for several possible tar-
get materials in directional detectors. Instead, we have
considered a single target material (CF

4

) and focused
on comparing the directional spectra produced by each
operator. We have also considered the possibility of dis-
tinguishing between di↵erent operators using directional
detection. However, the results of this paper and Ref. [69]
are in broad agreement, including our expressions for the
Radon Transforms and our predictions of a novel ring-like
signature for certain NREFT operators.
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Appendix A: Non-relativistic operators

Here, we list the NREFT operators which are consid-
ered in this work. At the nucleon level, they are con-
structed from the following Hermitian operators: the mo-
mentum transfer i~q/mn; the transverse WIMP-nucleon
velocity ~v?; the DM spin ~S�; and the nucleon spin ~Sn.
The transverse velocity is given by

~v? = ~v +
~q

µ�n
, (A1)

where µ�n = m�mn/(m� + mn) is the WIMP-nucleon
reduced mass and mn is the nucleon mass. The list of

NREFT operators is then as follows [23, 24, 56]:

O
1

= 1

O
3

= i~Sn · ( ~q

mn
⇥ ~v?)

O
4

= ~S� · ~Sn

O
5

= i~S� · ( ~q

mn
⇥ ~v?)

O
6

= (~S� · ~q)(~Sn · ~q)
O

7

= ~Sn · ~v?
O

8

= ~S� · ~v?
O

9

= i~S� · (~Sn ⇥ ~q)

O
10

= i~Sn · ~q
O

11

= i~S� · ~q
O

12

= ~S� · (~Sn ⇥ ~v?)

O
13

= i(~S� · ~v?)(~Sn · ~q

mn
)

O
14

= i(~S� · ~q

mn
)(~Sn · ~v?)

O
15

= �(~S� · ~q

mn
)((~Sn ⇥ ~v?) · ~q

mn
) .

(A2)

We neglect the operator O
2

= ~v2

?, as it does not arise
at leading order from a relativistic Lagrangian without
significant cancellation. It is therefore typically sub-
dominant to other operators in the list. We also omit
the two operators recently reported in Ref. [25]. Several
dictionaries are available which allow one to translate
from a relativistic interaction Lagrangian to the NREFT
operators listed above [23, 25, 56].

In addition, we have considered an example of a long-
range operator:

OLR
1

=
O

1

q2

. (A3)

This operator behaves as O
1

, with an additional q�4 sup-
pression of the nuclear response function.

From the nucleon-level operators, it is necessary to cal-
culate the matrix elements of these operators within the
nucleus, summing over the contributions of all nucleons.
Neglecting interference terms between di↵erent opera-
tors, the resulting nuclear response functions are given
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Element A mA [GeV] n̄ [cm�3] Core Mantle
Oxygen 16 14.9 3.45 ⇥ 1022 0.0 0.440
Silicon 28 26.1 1.77 ⇥ 1022 0.06 0.210
Magnesium 24 22.3 1.17 ⇥ 1022 0.0 0.228
Iron 56 52.1 6.11 ⇥ 1022 0.855 0.0626
Calcium 40 37.2 7.94 ⇥ 1020 0.0 0.0253
Sodium 23 21.4 1.47 ⇥ 1020 0.0 0.0027
Sulphur 32 29.8 2.33 ⇥ 1021 0.019 0.00025
Aluminium 27 25.1 1.09 ⇥ 1021 0.0 0.0235

Table 2. Summary of Earth elements included in this analysis. Next to last and last columns
report the mass fractions of each element in the Earth’s core and mantle, respectively (values from
Tab. 1 in Ref. [61]). The core and mantle constitute roughly 32% and 68% of the Earth’s total mass
respectively.

However, the Earth’s density is not uniform, so we must account for the radial density
profiles of each of the Earth elements ni(r) = ni(r). The distance l from A to some point
along the line AB can be written in terms of the distance r of that point from the Earth’s
centre as,

l = R� cos ✓ ±
q

r

2 � R

2
� sin2

✓ . (3.7)

With this, we can perform the integral along AB and calculate an e↵ective Earth-crossing
distance, de↵ :

de↵,i(cos ✓) =
1

ni

Z

AB
ni(r)dl = 2

Z R�

R� sin ✓

ni(r)

ni

r drq
r

2 � R

2
� sin2

✓

. (3.8)

Here, we have defined the number density averaged over the Earth’s radius, ni:

ni =
1

R�

Z R�

0
ni(r) dr .

(3.9)

The velocity distribution of these attenuated particles (i.e. those which survive the Earth
crossing) is therefore related to the free distribution by:

fA(v, �) = f0(v) exp

"
�

speciesX

i

�i(v) ni de↵,i(cos ✓)

#
= f0(v) exp

"
�

speciesX

i

de↵,i(cos ✓)

�i(v)

#
.

(3.10)

Here, we have defined the average mean free path due to scattering with a given Earth species
i as �̄i(v) = [�i(v)n̄i]�1. We consider the contribution of 8 elements, which are summarised in
Table 2 with tabulated density profiles taken from Ref. [61] (using data from Refs. [62, 63]).
We perform the integral in Eq. 3.8 numerically and tabulate the values of de↵ as a function
of cos ✓ for each element. We note that the majority of Earth elements have zero-spin, so we
would not expect a large Earth-scattering e↵ect for operators which couple predominantly
to the nuclear spin.
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Detector

A

B

(a) Attenuation (b) Deflection

Figure 2. Geometry for the scattering of DM particles in the Earth. (a) Attenuation:
Particles with velocity v = (v, ✓, �) must cross the Earth along the trajectory AB without scattering
in order to arrive at the detector. (b) Deflection: Particles with initial velocity v0 = (v0

, ✓

0
, �

0) will
reach the detector with velocity v = (v, ✓, �) if they interact along the line AB and scatter through
an angle ↵.

initial velocity v = (v, ✓, �) will reach the detector with that same velocity v if they do not
scatter during their passage through the Earth. If any such particle scatters, however, it
will be deflected from the trajectory shown in Fig. 2a and will no longer reach the detector
(assuming that the finite size of the detector can be neglected). Thus, the population of DM
particles reaching the detector with velocity v will be depleted.

The survival probability for a particle with velocity v is given by:

psurv(v) = exp


�
Z

AB

dl

�(r, v)

�
= exp

"
�

speciesX

i

�i(v)

Z

AB
ni(r)dl

#
,

(3.5)

where the integral is over the path A ! B from the surface of the Earth to the detector,
as illustrated in Fig. 2a. We have also written the mean free path � in terms of the to-
tal interaction cross section with Earth species i and the number density of that species:
�(r, v)�1 =

Pspecies
i �i(v)ni(r).

If the number density of particles in the Earth were uniform, then the integral over the
DM path in Eq. 3.5 would simply be equal to the Earth-crossing distance, d, as shown in
Fig. 2a. This is given by

d(cos ✓) = (R� � lD) cos ✓ +
q

2R�lD � l

2
D + (R� � lD)2 cos2 ✓

⇡
(

2R� cos ✓ ✓ 2 [0, ⇡/2]

0 ✓ 2 [⇡/2, ⇡] ,

(3.6)

where R� ⇡ 6371 km is the Earth’s radius and lD is the depth of the detector underground.
The last line in Eq. 3.6 is obtained in the limit lD ⌧ R� < �. From now on, we assume
that this inequality holds (i.e. that a typical DM particle is unlikely to scatter in the shallow
region of the Earth above the detector) and set lD to zero.
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ni

Z

AB
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R� sin ✓

ni(r)
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r drq
r

2 � R

2
� sin2

✓
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Here, we have defined the number density averaged over the Earth’s radius, ni:
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1

R�
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0
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The velocity distribution of these attenuated particles (i.e. those which survive the Earth
crossing) is therefore related to the free distribution by:

fA(v, �) = f0(v) exp

"
�

speciesX

i

�i(v) ni de↵,i(cos ✓)

#
= f0(v) exp

"
�

speciesX

i
d

e↵,i(cos ✓)

�i(v)

#
.

(3.10)

Here, we have defined the average mean free path due to scattering with a given Earth species
i as �̄i(v) = [�i(v)n̄i]�1. We consider the contribution of 8 elements, which are summarised in
Table 2 with tabulated density profiles taken from Ref. [61] (using data from Refs. [62, 63]).
We perform the integral in Eq. 3.8 numerically and tabulate the values of de↵ as a function
of cos ✓ for each element. We note that the majority of Earth elements have zero-spin, so we
would not expect a large Earth-scattering e↵ect for operators which couple predominantly
to the nuclear spin.
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e↵,i(cos ✓) =
1

ni

Z

AB

n

i(r)dl = 2

Z R�

R� sin ✓

ni(r)

ni

r drq
r

2 � R

2
� sin2

✓

. (3.8)
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#
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and then perform the integral over all incoming velocities v0:4

fD(v, �) =
X

a=±

Z
d2v̂0de↵(cos ✓)

�(a
v)

(a)4

2⇡

f0(
a
v, v̂0)P a(cos ↵) . (3.27)

3.3.4 Summing over elements

We now reintroduce the sum over the di↵erent species in the Earth, to give the final deflected
velocity distribution:

fD(v, �) =
speciesX

i

X

a=±

Z
d2v̂0 de↵,i(cos ✓)

�i(a
i v)

(a
i )

4

2⇡

f0(
a
i v, v̂0)P a

i (cos ↵) . (3.28)

We note that many of the terms in Eq. 3.28 have now acquired an i index: the kinematic term


± depends on the target nuclear mass; the e↵ective Earth-crossing distance de↵ depends on
the density profile of the species; and both the mean free path � and distribution of cos ↵

depend on the DM-nucleus cross section. We also emphasise that for some species, we will
need to include both terms in the a = ± sum, while for others, only the a = + term is
required (depending on the DM mass).

3.4 DM speed distribution

In order to explore the impact of Earth-scattering on event rates in (non-directional) direct
detection experiments, we must calculate the DM speed distribution at the detector, given
by:5

f̃(v, �) = v

2

Z
d2v̂ f̃(v, �) = v

2

Z
d2v̂ (fA(v, �) + fD(v, �)) = fA(v, �) + fD(v, �) . (3.29)

An analogous definition relates f0(v) and f0(v).
The attenuated speed distribution is obtained straightforwardly by integrating over

Eq. 3.10:

fA(v, �) = v

2

Z 2⇡

0
d�

Z 1

�1
d cos ✓ f0(v, ✓, �) exp

"
�

speciesX

i

de↵,i(cos ✓)

�i(v)

#
.

(3.30)

The coordinate description for f0(v, ✓, �) for a given value of � is obtained from Eqs. 3.2 and
3.4. With this, it is straightforward to evaluate Eq. 3.30 numerically for fixed �.

Similarly, the deflected speed distribution is given by

fD(v, �) = v

2
speciesX

i

X

a=±

Z
d2v̂

Z
d2v̂0 de↵,i(cos ✓)

�i(a
i v)

(a
i )

4

2⇡

f0(
a
i v, v̂0)P a

i (cos ↵) . (3.31)

The angle � enters only through the definition of cos ↵ (Eq. 3.16) in the factor cos(� � �

0).
Because we are integrating over all values of �, we can make use of the shift symmetry of the
integral and eliminate �

0 from the expression for cos ↵:

cos ↵ = sin ✓ sin ✓

0 cos � + cos ✓ cos ✓

0
. (3.32)

4

We remind the reader that ±
depends on cos ↵, which in turn depends on the incoming and outgoing

DM angles (see Eq. 3.16). This means that ±
must remain inside the integral over

ˆv0
.

5

Note that we use the notation f(v) for the full 3 dimensional velocity distribution and f(v) for the

distribution of the modulus v = |v|. These two definitions are related by Eq. 3.29.
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3.3.2 Contribution from all interaction points

We now integrate over all points which give a contribution to the deflected velocity distri-
bution. For a fixed final velocity v, we must integrate over the line AB in Fig. 2b. We
assume that the DM particles scatter at most once, meaning that the initial velocity distri-
bution f(v0) is not distorted by the passage through the Earth. We therefore take f(v0) to
be spatially uniform. The integration over the path length l along AB reduces to the same
form given in Eq. 3.8. The contribution of a given initial DM velocity v0 to the deflected
distribution is then:

fD(v, �) =
de↵(cos ✓)

�(v0)

v

0

v

f0(v
0)P (v0 ! v) d3v0

. (3.15)

3.3.3 Kinematics

We now consider how to calculate P (v0 ! v). The deflection angle ↵ is fixed geometrically
by the directions of DM particles incoming and outgoing from point C:3

cos ↵ = sin ✓ sin ✓

0 cos(� � �

0) + cos ✓ cos ✓

0
. (3.16)

For a given deflection angle ↵, DM mass m� and target nuclear mass mA, the ratio v

0
/v is

fixed by kinematics:

v

0

v

=
m� + mA

m� cos ↵ ±
q

m

2
A � m

2
� sin2

↵

⌘ 

±(↵, m�, mA) . (3.17)

We note that for m�  mA, the only valid solution is v

0 = 

+
v for all values of ↵. Instead,

for m� > mA, we require cos ↵ > (1 � m

2
A/m

2
�)1/2, in which case both solutions are valid:

v

0 = 

±
v.

We can now write the scattering probability as

P (v0 ! v) =
1

v

2

X

a=±
�(v � v

0
/

a)P a(v̂) . (3.18)

The factor of 1/v

2 is required to ensure correct normalisation and we implicitly assume that
the negative-sign solution in the sum is included only in the case that m� > mA. The term
P

±(v̂) is now simply the probability distribution for the direction of v. The deflection of the
DM particle is azimuthally symmetric, so we can write:

P

±(v̂) =
1

2⇡

P

±(cos ↵) .

(3.19)

The probability distribution of cos ↵ is given by:

P

±(cos ↵) =
1

�

d�

d cos ↵

����
±

, (3.20)

where � is the total cross section. With this definition, the distribution of cos ↵ is normalised
such that: Z �

P

+(cos ↵) + P

�(cos ↵)
�

d cos ↵ = 1 , (3.21)

3

We remind the reader that the primed angles (✓0, �0
) describe the incoming DM particle direction (with

the positive z-axis oriented from the centre of the Earth to the detector), while the unprimed angles (✓, �)

describe the final DM direction (in the same coordinate frame).
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(a) Attenuation

Detector

A

B

C

(b) Deflection

Figure 2. Geometry for the scattering of DM particles in the Earth. (a) Attenuation:
Particles with velocity v = (v, ✓, �) must cross the Earth along the trajectory AB without scattering
in order to arrive at the detector. (b) Deflection: Particles with initial velocity v0 = (v0

, ✓

0
, �

0) will
reach the detector with velocity v = (v, ✓, �) if they interact along the line AB and scatter through
an angle ↵.

initial velocity v = (v, ✓, �) will reach the detector with that same velocity v if they do not
scatter during their passage through the Earth. If any such particle scatters, however, it
will be deflected from the trajectory shown in Fig. 2a and will no longer reach the detector
(assuming that the finite size of the detector can be neglected). Thus, the population of DM
particles reaching the detector with velocity v will be depleted.

The survival probability for a particle with velocity v is given by:

psurv(v) = exp


�
Z

AB

dl

�(r, v)

�
= exp

"
�

speciesX

i

�i(v)

Z

AB
ni(r)dl

#
,

(3.5)

where the integral is over the path A ! B from the surface of the Earth to the detector,
as illustrated in Fig. 2a. We have also written the mean free path � in terms of the to-
tal interaction cross section with Earth species i and the number density of that species:
�(r, v)�1 =

Pspecies
i �i(v)ni(r).

If the number density of particles in the Earth were uniform, then the integral over the
DM path in Eq. 3.5 would simply be equal to the Earth-crossing distance, d, as shown in
Fig. 2a. This is given by

d(cos ✓) = (R� � lD) cos ✓ +
q

2R�lD � l

2
D + (R� � lD)2 cos2 ✓

⇡
(

2R� cos ✓ ✓ 2 [0, ⇡/2]

0 ✓ 2 [⇡/2, ⇡] ,

(3.6)

where R� ⇡ 6371 km is the Earth’s radius and lD is the depth of the detector underground.
The last line in Eq. 3.6 is obtained in the limit lD ⌧ R� < �. From now on, we assume
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Figure 5. Perturbed DM speed distribution due to low-mass DM (m� = 0.5 GeV) scat-
tering in the Earth.The DM-nucleon couplings are normalised to give an average scattering prob-
ability of p

scat

= 10%, as defined in Eq. 3.36. We show results for the three operators Ô
1

(left), Ô
8

(middle) and Ô
12

(right). The dashed lines correspond to the free DM speed distribution without
Earth-scattering f

0

(v) while the solid lines correspond to di↵erent average incoming DM direction
(see Fig. 1): � = 0 leads to maximal Earth-crossing, while � = ⇡ leads to minimal Earth-crossing
before reaching the detector. Each solid line corresponds to a horizontal slice through Fig. 6.

4.1 Low Mass

In Fig. 5 we show the e↵ects of Earth-scattering on the speed distribution for light DM
(m� = 0.5 GeV) for three values of �. As one might expect, for particles which must cross
most of the Earth before reaching the detector (� = 0, solid green) , the predominant e↵ect
is that of attenuation, leading to a reduced DM population. For Operator Ô1 (left panel of
Fig. 5), the size of this e↵ect increases with increasing DM speed. In fact, the total scattering
cross section for Ô1 is velocity-independent. However, the SHM velocity distribution (Eq. 3.2)
becomes increasingly anisotropic as we increase v. For large v, more of the DM particles are
travelling parallel to the mean DM velocity hv�i, meaning that the average Earth-crossing
distance for particles to reach the detector increases. For Operators Ô8 and Ô12 (centre and
right panels of Fig. 5), attenuation also increases as a function of v, though in this case the
predominant cause is that the total cross section increases with the DM speed: �8,12 / v

2.
As we increase �, the typical DM particle must travel through less of the Earth before

reaching the detector. For � = ⇡/2 (solid blue line), particles travelling along v̂ = hv̂�i
must cross a negligibly small depth of the Earth before reaching the detector (typically on
the order of a few kilometres). However, the distribution of DM velocities about the average
means that some particles will still be travelling an appreciable distance through the Earth
and therefore attenuation still has an e↵ect. However, for all three operators in Fig. 5 the
e↵ects of deflection towards the detector are more significant, leading to an increase in the
DM population for � = ⇡/2. For Operator Ô1, this increase is roughly a 2% e↵ect, increasing
to ⇠ 4% for � = ⇡. In this latter case, the average DM particle arrives at the detector
having only passed a small distance through the Earth (equal to lD the underground depth
of the detector), meaning that the e↵ects of attenuation are minimal. We note that at the
highest DM speeds (v = ve + vesc ⇡ 753 km s�1) the enhancement due to deflection reduces
to zero. This is because the speed of DM particles is reduced on scattering. Particles at
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Figure 6. Percentage change in the speed distribution due to Dark Matter scattering in
the Earth. Results for the standard SI interaction (Operator Ô

1

) are shown in the top row, while
results for two other DM-nucleon operators (see Sec. 2) are shown in the middle row (Operator Ô

8

)
and bottom row (Operator Ô

12

). Results are shown for two DM masses: 0.5 GeV (left column) and
50 GeV (right column). In all cases, the DM-nucleon couplings are normalised to give an average
scattering probability of p

scat

= 10%, as defined in Eq. 3.36. In each panel, the x-axis shows the
DM particle speed v while the y-axis shows the angle � between the average incoming DM velocity
hv̂�i and the detector position (see Fig. 1). The angle � = 0 corresponds to maximal Earth-crossing
before reaching the detector, while � = ⇡ corresponds to minimal Earth-crossing. The dashed contour
corresponds to no change in the DM speed distribution.
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Detector

Figure 1. Geometry of the detector position r
det

measured with respect to the mean DM
velocity hv�i. The angle between these two vectors is denoted �. For � = 0, the average DM particle
experiences the maximal Earth-crossing distance before reaching the detector. Instead, for � = ⇡ the
Earth crossing distance is minimal. We note that the true DM velocities are distributed about the
mean value hv�i (according to Eq. 3.2). We also remind the reader that the flux of DM particles
(before scattering) is spatially uniform, so DM particles enter the Earth’s surface at all points (not
only along the diameter).

Here, the normalisation constant N is given by:

N = (2⇡�

2
v)3/2

 
erf

✓
vescp
2�v

◆
�
r

2

⇡

vesc

�v
exp

✓
�v

2
esc

2�

2
v

◆!
, (3.3)

and we assume �v = 156 km s�1 for the velocity dispersion of the halo, and vesc = 533 km s�1

for the local escape speed in the Galactic frame [60]. In the SHM, the average DM velocity
in the Earth’s frame arises from the motion of the Earth through the halo: hv�i = �ve. We
assume a constant value of ve = 220 km s�1 for the Earth’s speed.

It will be useful in the following sections to have an explicit coordinate expression for
f0(v). In a coordinate system in which the detector lies along the positive z-axis (such as
that illustrated in Figs. 2a and 2b) we can choose (without loss of generality) hv�i to lie in
the x-z plane. We can then write the angle between a given DM velocity v = (v, ✓, �) and
the average velocity hv�i in terms of the polar coordinates as:

v · hv�i = vve (sin � sin ✓ cos � + cos � cos ✓) . (3.4)

The angle � should be interpreted as the angle between hv�i and the position of the
detector rdet on the Earth’s surface: � = cos�1 (hv̂�i · r̂det). This is illustrated in Fig. 1.
An angle of � = 0 corresponds to a flux of DM particles which must (on average) cross the
entire Earth before reaching the detector. Instead, � = ⇡ corresponds to the case where the
majority of DM particles pass the detector before crossing the Earth. We describe how to
calculate the value of � for a given position on the Earth in Sec. 5.

3.2 Attenuation

We now calculate the e↵ects of attenuation on the DM velocity distribution. In Fig. 2a, we
show the scattering geometry for DM particles impinging on the detector. Particles with an
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Figure 7. Ratio of the number of direct detection signal events with Earth-scattering
N

pert

and without Earth-scattering N

free

. In the left panel, we show results for m� = 0.5 GeV
(in a CRESST-II-like detector [6]) and in the right panel for m� = 50 GeV (in a LUX-like detector
[7]). In all cases, we normalise the DM-nucleon couplings to give average scattering probability in
the Earth of 10%. Dashed lines show the results when only the e↵ects of attenuation are included in
the calculation. The angle � = 0 (� = ⇡) corresponds to maximal (minimal) Earth-crossing before
reaching the detector (see Fig. 1).

rate around � = ⇡/2. Depending on the range of � probed by a given detector, this may
result in a phase shift in the daily modulation of the DM signal for Ô8 relative to operators
Ô1 and Ô12.

We comment briefly on the modulation for the higher mass 50 GeV particle (right panel
of Fig. 7). In this case, the only observable e↵ect is a reduction in the signal rate for small �.
The reason for this can be seen in the right column of Fig. 6; the only substantial enhancement
in the velocity distribution is at low speeds, which fall below the 1.1 keV threshold of the
LUX experiment. We note that in this case, the main consequence of including deflected DM
particles is that they partially replenish those particles lost to attenuation, reducing the size
of the modulation e↵ect.

5.1 Daily modulation

We now consider how this modulation as a function of � translates into a modulation as a
function of time. To do this, we need to calculate � for a given time and detector latitude.
First, we define a coordinate system in which the positive z-direction points along the Earth’s
North pole. The position of a detector at latitude ✓l is then8

r̂det = (cos ✓l cos !t, cos ✓l sin !t, sin ✓l) , (5.1)

where ! = 2⇡/day is the angular velocity of the Earth’s rotation. Here, we define t = 0 as
the time at which the detector position is maximally aligned with the Earth’s velocity. In

8

We assume by convention that latitudes in the Northern hemisphere are positive, while latitudes in the

Southern hemisphere are negative.
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. In the left panel, we show results for m� = 0.5 GeV
(in a CRESST-II-like detector [6]) and in the right panel for m� = 50 GeV (in a LUX-like detector
[7]). In all cases, we normalise the DM-nucleon couplings to give average scattering probability in
the Earth of 10%. Dashed lines show the results when only the e↵ects of attenuation are included in
the calculation. The angle � = 0 (� = ⇡) corresponds to maximal (minimal) Earth-crossing before
reaching the detector (see Fig. 1).

rate around � = ⇡/2. Depending on the range of � probed by a given detector, this may
result in a phase shift in the daily modulation of the DM signal for Ô8 relative to operators
Ô1 and Ô12.

We comment briefly on the modulation for the higher mass 50 GeV particle (right panel
of Fig. 7). In this case, the only observable e↵ect is a reduction in the signal rate for small �.
The reason for this can be seen in the right column of Fig. 6; the only substantial enhancement
in the velocity distribution is at low speeds, which fall below the 1.1 keV threshold of the
LUX experiment. We note that in this case, the main consequence of including deflected DM
particles is that they partially replenish those particles lost to attenuation, reducing the size
of the modulation e↵ect.

5.1 Daily modulation

We now consider how this modulation as a function of � translates into a modulation as a
function of time. To do this, we need to calculate � for a given time and detector latitude.
First, we define a coordinate system in which the positive z-direction points along the Earth’s
North pole. The position of a detector at latitude ✓l is then8

r̂det = (cos ✓l cos !t, cos ✓l sin !t, sin ✓l) , (5.1)

where ! = 2⇡/day is the angular velocity of the Earth’s rotation. Here, we define t = 0 as
the time at which the detector position is maximally aligned with the Earth’s velocity. In
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We assume by convention that latitudes in the Northern hemisphere are positive, while latitudes in the

Southern hemisphere are negative.
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Detector

Figure 1. Geometry of the detector position r
det

measured with respect to the mean DM
velocity hv�i. The angle between these two vectors is denoted �. For � = 0, the average DM particle
experiences the maximal Earth-crossing distance before reaching the detector. Instead, for � = ⇡ the
Earth crossing distance is minimal. We note that the true DM velocities are distributed about the
mean value hv�i (according to Eq. 3.2). We also remind the reader that the flux of DM particles
(before scattering) is spatially uniform, so DM particles enter the Earth’s surface at all points (not
only along the diameter).
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and we assume �v = 156 km s�1 for the velocity dispersion of the halo, and vesc = 533 km s�1

for the local escape speed in the Galactic frame [60]. In the SHM, the average DM velocity
in the Earth’s frame arises from the motion of the Earth through the halo: hv�i = �ve. We
assume a constant value of ve = 220 km s�1 for the Earth’s speed.

It will be useful in the following sections to have an explicit coordinate expression for
f0(v). In a coordinate system in which the detector lies along the positive z-axis (such as
that illustrated in Figs. 2a and 2b) we can choose (without loss of generality) hv�i to lie in
the x-z plane. We can then write the angle between a given DM velocity v = (v, ✓, �) and
the average velocity hv�i in terms of the polar coordinates as:

v · hv�i = vve (sin � sin ✓ cos � + cos � cos ✓) . (3.4)

The angle � should be interpreted as the angle between hv�i and the position of the
detector rdet on the Earth’s surface: � = cos�1 (hv̂�i · r̂det). This is illustrated in Fig. 1.
An angle of � = 0 corresponds to a flux of DM particles which must (on average) cross the
entire Earth before reaching the detector. Instead, � = ⇡ corresponds to the case where the
majority of DM particles pass the detector before crossing the Earth. We describe how to
calculate the value of � for a given position on the Earth in Sec. 5.

3.2 Attenuation

We now calculate the e↵ects of attenuation on the DM velocity distribution. In Fig. 2a, we
show the scattering geometry for DM particles impinging on the detector. Particles with an
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Figure 8. Earth-scattering e↵ects over the surface of the Earth. Relative enhancement in
the event rate in a CRESST-II-like detector [6] due to the e↵ects of Earth scattering. We assume
a DM mass of m� = 0.5 GeV, interacting through the standard SI operator Ô

1

(with normalisation
fixed such that p

scat

= 10%). The black cross shows the point on the Earth at which the average
DM particle would appear to be coming from directly overhead. There is a 12 hour time di↵erence
between the left and right panels. Animations available online at github.com/bradkav/EarthShadow.

this coordinate system, the Earth’s velocity with respect to the Galactic rest-frame can be
written

v̂e = (sin ↵, 0, cos ↵) , (5.2)

where the angle ↵ varies between 36.3� and 49.3� over the course of a year [21]. For con-
creteness, in this work, we fix the angle ↵ to 42.8�. The average DM velocity is simply
hv�i = �ve, so we obtain:

� = cos�1(hv̂�i · r̂det)
= cos�1 (� cos ✓l cos !t sin ↵ � sin ✓l cos ↵) .

(5.3)

With this expression, we can directly map the results of Fig. 7 onto the rate as a function of
time (for a given detector latitude).

In Fig. 8, we show the ratio of the rate with Earth-scattering to the rate without Earth-
scattering over the surface of the Earth, for 0.5 GeV DM particles interacting through the
operator Ô1. The black cross (at a latitude of 42.8� N) shows the point on the Earth at
which DM particles appear to be coming from directly overhead. As expected the maximum
reduction in the expected event rate (dark blue) occurs on the opposite side of the Earth;
particles emerging from this dark blue region have crossed almost the entire diameter. We
notice also that the red region of the maps is much larger than the blue region.9 As discussed
in Sec. 4, the e↵ects of attenuation are large but focused only over a small area of the Earth.
The two panels of Fig. 8 compare the e↵ects of Earth-scattering at 12 hour intervals. As the
Earth rotates, the apparent source of the DM wind travels across the sky and the pattern
of Earth-scatter e↵ects rotates across the surface of the Earth. Animations showing the
modulation signal over the entire surface of the Earth, as well as at a selection of underground
laboratories, can be found online accompanying the EarthShadow code [27].

In Fig. 9, we show the ratio of the rate with and without Earth-scattering for detectors
in 4 locations on the Earth. For the LNGS lab in Italy (top left, ✓l = 42.5� N) Earth-
scattering always leads to a net increase in the DM signal. For Ô1, however, there is no
appreciable modulation, only a few percent increase in the total rate, regardless of the time.
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We use an equal-area Mollweide projection to produce the maps in Fig. 8, so such a comparison between

areas is reasonable.
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Figure 8. Earth-scattering e↵ects over the surface of the Earth. Relative enhancement in
the event rate in a CRESST-II-like detector [6] due to the e↵ects of Earth scattering. We assume
a DM mass of m� = 0.5 GeV, interacting through the standard SI operator Ô

1

(with normalisation
fixed such that p

scat

= 10%). The black cross shows the point on the Earth at which the average
DM particle would appear to be coming from directly overhead. There is a 12 hour time di↵erence
between the left and right panels. Animations available online at github.com/bradkav/EarthShadow.
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In Fig. 8, we show the ratio of the rate with Earth-scattering to the rate without Earth-
scattering over the surface of the Earth, for 0.5 GeV DM particles interacting through the
operator Ô1. The black cross (at a latitude of 42.8� N) shows the point on the Earth at
which DM particles appear to be coming from directly overhead. As expected the maximum
reduction in the expected event rate (dark blue) occurs on the opposite side of the Earth;
particles emerging from this dark blue region have crossed almost the entire diameter. We
notice also that the red region of the maps is much larger than the blue region.9 As discussed
in Sec. 4, the e↵ects of attenuation are large but focused only over a small area of the Earth.
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Earth rotates, the apparent source of the DM wind travels across the sky and the pattern
of Earth-scatter e↵ects rotates across the surface of the Earth. Animations showing the
modulation signal over the entire surface of the Earth, as well as at a selection of underground
laboratories, can be found online accompanying the EarthShadow code [27].

In Fig. 9, we show the ratio of the rate with and without Earth-scattering for detectors
in 4 locations on the Earth. For the LNGS lab in Italy (top left, ✓l = 42.5� N) Earth-
scattering always leads to a net increase in the DM signal. For Ô1, however, there is no
appreciable modulation, only a few percent increase in the total rate, regardless of the time.

9

We use an equal-area Mollweide projection to produce the maps in Fig. 8, so such a comparison between

areas is reasonable.

– 23 –

•  O ()O fi x n < n O ) O
•  n OH ~ y

fin y fi H H PV n WW ~



2016/11/21~11/22 25 4 01B023 01 	

0 6 12 18 24
time [hours]

0.9

1.0

1.1

1.2

N
p
er

t/
N

fr
ee

LNGS (42.5� N)

Atten. only
Atten.+Defl.

O
1

O
8

O
12

0 6 12 18 24
time [hours]

0.9

1.0

1.1

1.2

N
p
er

t/
N

fr
ee

CJPL (28.2� N)

O
1

O
8

O
12

0 6 12 18 24
time [hours]

0.8

0.9

1.0

1.1

1.2

N
p
er

t/
N

fr
ee

INO (9.7� N)

O
1

O
8

O
12

0 6 12 18 24
time [hours]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
p
er

t/
N

fr
ee

SUPL (37.1� S)

O
1

O
8

O
12

Figure 9. Daily modulation in the event rate. Ratio of numbers of events in a CRESST-II-like
detector [6] with and without the e↵ects of Earth scattering for a DM particle of mass m� = 0.5 GeV.
We fix the average scattering probability at p

scat

= 10%. Dashed lines show the modulation when
only attenuation is included, while solid lines show the e↵ect when both attenuation and deflection
are included. Each panel shows results for a lab in a di↵erent location (latitude given in parentheses).

As is clear from Fig. 8, the enhancement due to Earth-scattering is roughly constant at high
latitudes. At LNGS, we have ✓l ⇡ ↵, meaning that � is always relatively large. In other
words, the DM wind appears to be coming from directly above for most of the day, leading to
minimal attenuation. The main contribution then is a constant enhancement due to isotropic
deflection of the DM particles over the Earth’s surface.

Instead, a modulation of a few percent is observed for Ô8. At t ⇠ 0 hr, the DM wind
comes from directly overhead (� = ⇡) and the enhancement is at a minimum due to the
limited deflection of DM particles back towards the detector. For Ô12, the phase of the
modulation is reversed; the predominantly backwards deflection enhances the rate when DM
particles come from directly overhead.

As we move towards the Equator, the incoming direction of the DM wind varies more
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