暗黒物質の直接探索における地球との散乱効果について

```
arXiv:1611.05453v1
```

Signatures of Earth－scattering in the direct detection of Dark Matter

$$
\begin{gathered}
\text { 神戸大学 } \\
\text { 矢ケ部 遼太 }
\end{gathered}
$$

Signatures of Earth－scattering in the direct detection of Dark Matter

Bradley J．Kavanagh，${ }^{a}$ Riccardo Catena ${ }^{\text {b }}$ and Chris Kouvaris ${ }^{\text {c }}$
${ }^{\text {a }}$ LPTHE，CNRS，UMR 7589， 4 Place Jussieu，F－75252，Paris，France
${ }^{\mathrm{b}}$ Chalmers University of Technology，Department of Physics，SE－412 96 Göteborg，Sweden ${ }^{\mathrm{c}} \mathrm{CP}^{3}$－Origins，University of Southern Denmark，Campusvej 55，DK－5230 Odense，Denmark
E－mail：bkavanagh＠lpthe．jussieu．fr，catena＠chalmers．se，kouvaris＠cp3．sdu．dk

■ 今回お話するのは，
DM particle が，地球と散乱する過程を考慮した場合の速度分布と計数率への影響について

■ 二つの効果

$$
\tilde{f}(\mathbf{v}, \boldsymbol{\gamma})=f_{A}(\mathbf{v}, \gamma)+f_{D}(\mathbf{v}, \gamma)
$$

Attenuation

Deflection

※検出器が設置されている地下の深さは地球の半径に比べて小さいので無視。
single scatterを仮定，electronとの相互作用は考えない。（本当は考えるべき）

$$
\begin{aligned}
& \mathrm{O}_{1}=1 \\
& \mathrm{O}_{3}=i \vec{S}_{n} \cdot\left(\frac{\vec{q}}{m_{n}} \times \vec{v}^{\perp}\right) \\
& \mathrm{O}_{4}=\vec{S}_{\chi} \cdot \vec{S}_{n} \\
& \mathrm{O}_{5}=i \vec{S}_{\chi} \cdot\left(\frac{\vec{q}}{m_{n}} \times \vec{v}^{\perp}\right) \\
& \mathrm{O}_{6}=\left(\vec{S}_{\chi} \cdot \vec{q}\left(\vec{S}_{n} \cdot \vec{q}\right)\right. \\
& \mathrm{O}_{7}=\vec{S}_{n} \cdot \vec{v}^{\perp} \\
& \mathrm{O}_{8}=\vec{S}_{\chi} \cdot \vec{v}^{\perp} \\
& \mathrm{O}_{9}=i \vec{S}_{x} \cdot\left(\vec{S}_{n} \times \vec{q}\right) \\
& \mathrm{O}_{10}=i \vec{S}_{n} \cdot \vec{q} \\
& \mathrm{O}_{11}=i \vec{S}_{\chi} \cdot \vec{q} \\
& \mathrm{O}_{12}=\vec{S}_{\chi} \cdot\left(\vec{S}_{n} \times \vec{v}^{\perp}\right) \\
& \mathrm{O}_{13}=i\left(\vec{S}_{x} \cdot \vec{v}^{\perp}\right)\left(\vec{S}_{n} \cdot \frac{\vec{q}}{m_{n}}\right) \\
& \mathrm{O}_{14}=i\left(\vec{S}_{x} \cdot \frac{\vec{q}}{m_{n}}\right)\left(\vec{S}_{n} \cdot \vec{v}^{\perp}\right) \\
& \mathrm{O}_{15}=-\left(\vec{S}_{x} \cdot \frac{\vec{q}}{m_{n}}\right)\left(\left(\vec{S}_{n} \times \vec{v}^{\perp}\right) \cdot \frac{\vec{q}}{m_{n}}\right) .
\end{aligned}
$$

Attenuation

$$
f_{A}(\mathbf{v}, \mathbf{v})=f_{0}(\mathbf{v}) \exp \left[-\sum_{i}^{\text {species }} \sigma_{i}(\mathbf{v}) n_{i} d_{e f f, i}(\cos \theta)\right]=f_{0}(\mathbf{v}) \exp \left[-\sum_{i}^{\text {species }} \frac{d_{\mathrm{eff}, \mathrm{i}}(\cos \theta)}{\lambda_{i}(\mathbf{v})}\right]
$$

以下の元素で地球の組成を仮定

Element	A	$\mathrm{m}_{\mathrm{A}}[\mathrm{GeV}]$	$\mathrm{n}\left[\mathrm{cm}^{-3}\right]$	Core	Mantle
Oxygen	16	14.9	3.45×10^{22}	0.0	0.440
Silicon	28	26.1	1.77×10^{22}	0.06	0.210
Magnesium	24	22.3	1.17×10^{22}	0.0	0.228
Iron	56	52.1	6.11×10^{22}	0.855	0.0626
Calcium	40	37.2	7.94×10^{20}	0.0	0.0253
Sodium	23	21.4	1.47×10^{20}	0.0	0.0027
Sulphur	32	29.8	2.33×10^{21}	0.019	0.00025
Aluminium	27	25.1	1.09×10^{21}	0.0	0.0235

Deflection

$f_{D}(\mathbf{v}, \boldsymbol{Y})=\sum_{a= \pm} \int d^{2} \hat{\mathbf{v}}^{\prime} \frac{d_{\text {eff }}(\cos \theta)}{\bar{\lambda}\left(\kappa^{a} v\right)} \frac{\left(\kappa^{a}\right)^{4}}{2 \pi} f_{0}\left(\kappa^{a} \mathbf{v}, \hat{\mathbf{v}}^{\prime}\right) P^{a}(\cos \alpha)$

$$
\frac{v^{\prime}}{v}=\frac{m_{x}+m_{A}}{m_{x} \cos \alpha \pm \sqrt{m_{A}^{2}-m_{x}^{2} \sin ^{2} \alpha}}=\kappa^{ \pm}\left(\alpha, m_{x}, m_{A}\right)
$$

■ Y vs．v の2次元のパラメー夕空間で見るとこうなる

$z: f(v, v) / f_{0}(v)$

Modulation

$$
\hat{\mathbf{r}}_{\mathrm{det}}=(\cos \theta \cos \omega t, \cos \theta \sin \omega t, \sin \theta)
$$

入射角によって，信号数の比がどうのように変わるか y が小さい \rightarrow ほとんど地球の直径を通り抜けないといけないので，全体的に，suppress される
yが大きい \rightarrow 真横や，頭上からDM が来るのに対応しているので，反応率は変わらない

V から時間に焼き直す

$$
\begin{aligned}
Y & =\cos ^{-1}\left(\left\langle\hat{\mathbf{v}}_{X}\right\rangle \cdot \hat{\mathbf{r}}_{\text {det }}\right) \\
& =\cos ^{-1}(-\cos \theta \cos \omega t \sin \alpha-\sin \theta \cos \alpha)
\end{aligned}
$$

Oh， 12 h で示してあるが，著者のHP に行けば，Oh－24h の動画を観れる北半球は，スペクトルが enhance される領域が大きい
一方で，南半球の狭い領域では attenuation の効果が大きく，suppress される

－Daily modulation

世界の異なる緯度を持つ 4地点での，反応数の変化 vs．時間

北半球では，正味の反応数は増加するが，変化率は小さい

南半球では，attenuation による効果が大きいため， 12 h 付近で大きく反応数が小さくなる

赤道に近づくほど， attenuation と deflection の効果がバランスして， スペクトルが複雑になる

Conclusion

地球とDM の散乱は，速さ分布の強度を減らす
この効果は，緯度 39° S -49° S で最も大きく，南半球の検出器において modulation の強度は $10-30 \%$ 程度， 1 日単位で変化する

北半球においては，地球－DM 散乱は，DM の速さ分布の強度を増加させるが modulation は小さく 1－10 \％程度

異なる DM－原子核相互作用は，地球との散乱において，異なる方向にDM を deflect する

0．5 GeV 付近は，制限もゆるくて，かつこれから近い未来に探索される可能性が高いので，これらの効果を調べる事ができるはず

これらの study ができれば，local DM density や，反応断面積を独立に決定する事ができる

また，スペクトルの形の違いで，DMの ID ができるかもしれない

Backup

