
BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

SOLAR SAIL PROJECT

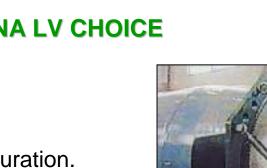
MOSCOW 2001

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

CONCEPT OF SOLAR SAIL PROJECT

1-st phase – technological experiment

- 1. Destination solar sail blades deployment verification
- **2. Launch data** July 2001
- **3. Launch vehicle** insertion by VOLNA LV (converted SLBM SS-N-18) as main payload; launch from submarine from Barents Sea
- **4.** Flight configuration flight along the suborbital trajectory; flight results records recovers by IRDT based reentry capsule (landing place Kamchatka Peninsula)
- 5. Experiment duration $\sim 400 \text{ s}$


2-nd phase – demonstration experiment

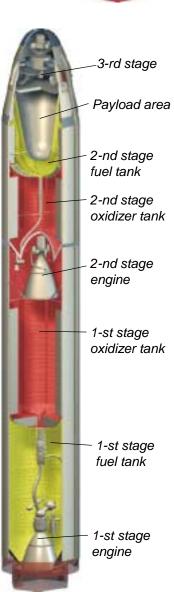
- 1. Destination solar sail spacecraft operational possibilities demonstration
- 2. Launch data October-November 2001
- **3. Launch vehicle** insertion by VOLNA LV (converted SLBM SS-N-18) as main payload; launch from submarine from Barents Sea
- **4.** Flight configuration orbital flight; $H\alpha$ =840 km, $H\pi$ =832 km, i=78°
- 5. Experiment duration about 3 months

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

REASONS FOR VOLNA LV CHOICE

- 1. Payload status is primary.
- 2. Nothing to change for launch vehicle configuration.
- 3. Nothing to change for launch preparation campaign.
- 4. High reliability, based on prototype flight history.
- 5. Affordable cost.
- 6. Experience of launches for civilian program.
- 7. Relatively flexible launch date.

SOLAR SAIL PROJECT


BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

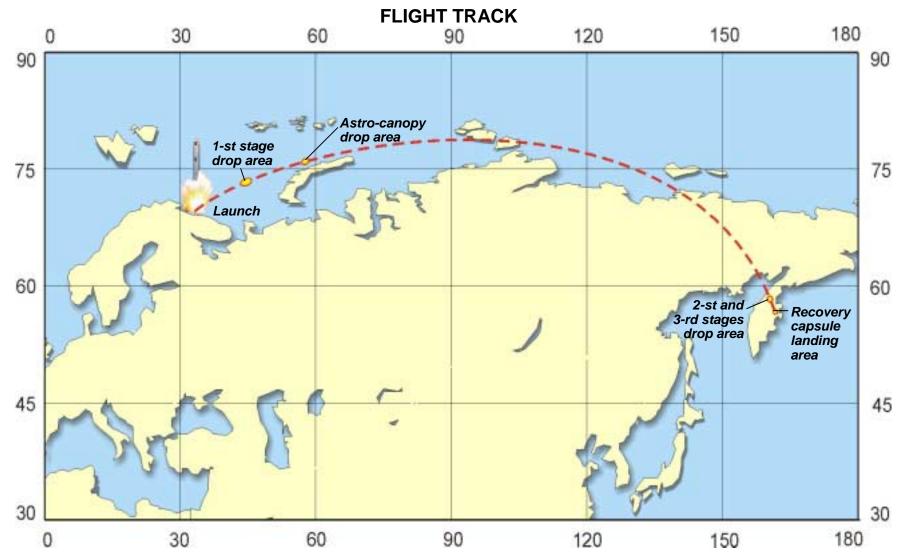
VOLNA LAUNCH VEHICLE

LV VOLNA is being developed by State Rocket Center "Makeyev Design Bureau" on the base of SLBM SS-N-18. VOLNA can be launched from a surfaced or submerged KALMAR (DELTA III) type submarine. Payload of the LV VOLNA is accommodated inside a protected capsule mounted in the warhead section of the SLBM. Basically launch vehicle is intended for suborbital launches.

VOLNA reliability rate, based on SS-N-18 flight history, is 0.95 (total number of launches – 147, among them successful – 140). VOLNA LV was used for insertion german scientific package during microgravity experiment in 1995.

Basic chara	acteristics
Number of stages	
Propellant	\dots liquid: N ₂ O ₄ + UDMH
Launch weight	35.4 t
Overall dimensions of LV :	
– length	14.2 m
– diameter	1.8 m
Payload area volume	1.3 m ³
Payload mass (into suborbital trajectory)	up to 720 kg
Insertion g-loads (longitudinal x lateral):	, C
- at take-off	4 x 3
- at flight	
Launch point location	
	Pacific Ocean (optional)

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

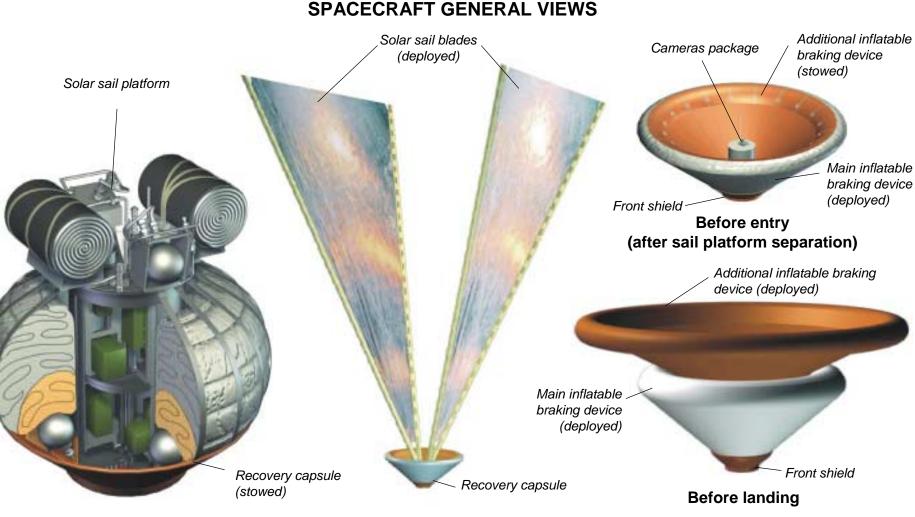

1-ST PHASE – TECHNOLOGICAL EXPERIMENT MISSION PROFILE

Beginning of deployment the solar sail blades. Imaging. End of deployment $T = 573 \, s$ the solar sail blades. Imaging. $T = 694 \, s$ Lower protective cover separation VOLNA 3-rd stage overturn. Payload module separation Beginning of inflation the Tsep = 313 s; Hsep = 264 s recovery capsule braking device Solar sail platform Pressure reducina Upper protective separation inside payload cover separation T = 995 s; H = 150 kmcompartment $Tent = 1037 \, s$ VOLNA 2-nd stage separation. $H = 100 \ km$ 3-rd stage ignition V ent = 6372 m/sEntry into $\Theta ent = -13.2^{\circ}$ atmosphere Solar sail deployment altitude...... ~ 400 km VOLNA 2-nd stage ignition Solar sail deployment duration...... 60 s Aerobraking Total duration of the solar sail flight.. 422 s Apogee altitude...... 411 km VOLNA 1-st stage separation Apogee time...... 608 s Inflation of the Total mission duration..... 1903 s VOLNA launch from additional the KALMAR (DELTA III) braking device type submarine Landing

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

1-ST PHASE – TECHNOLOGICAL EXPERIMENT

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS


1-ST PHASE – TECHNOLOGICAL EXPERIMENT

Palanao 2-st drop area 3-rd drop area Recovery capsule ianding area 0 Ust-Kamchatsk Petropavlovsk-Kamchatsky

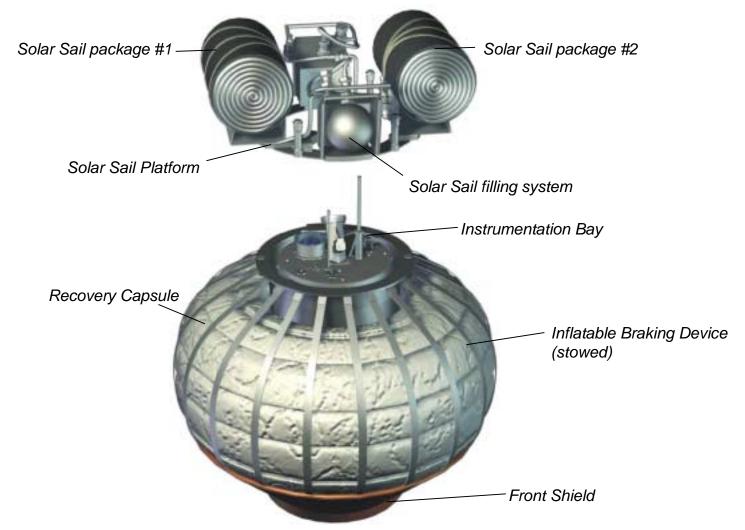
RECOVERY CAPSULE LANDING AREA

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

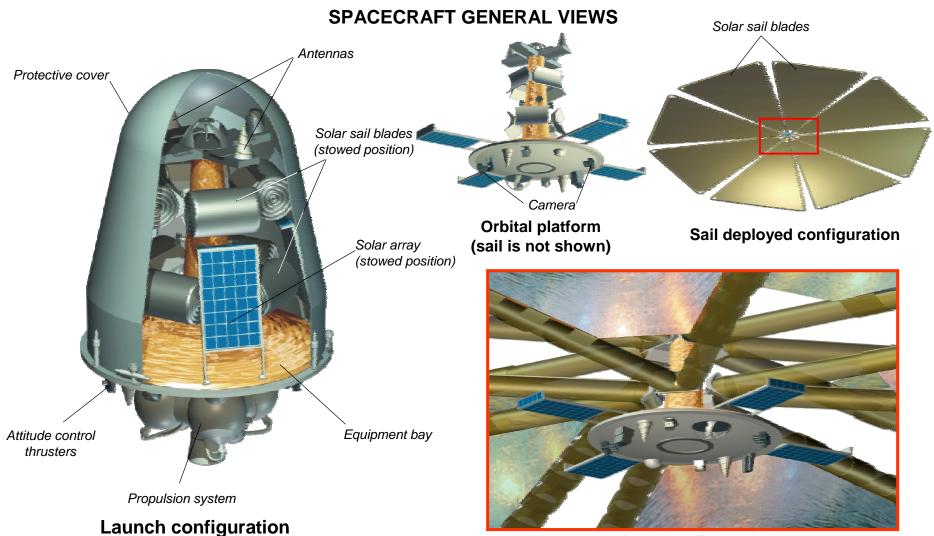
1-ST PHASE – TECHNOLOGICAL EXPERIMENT

Launch configuration

Flight configuration

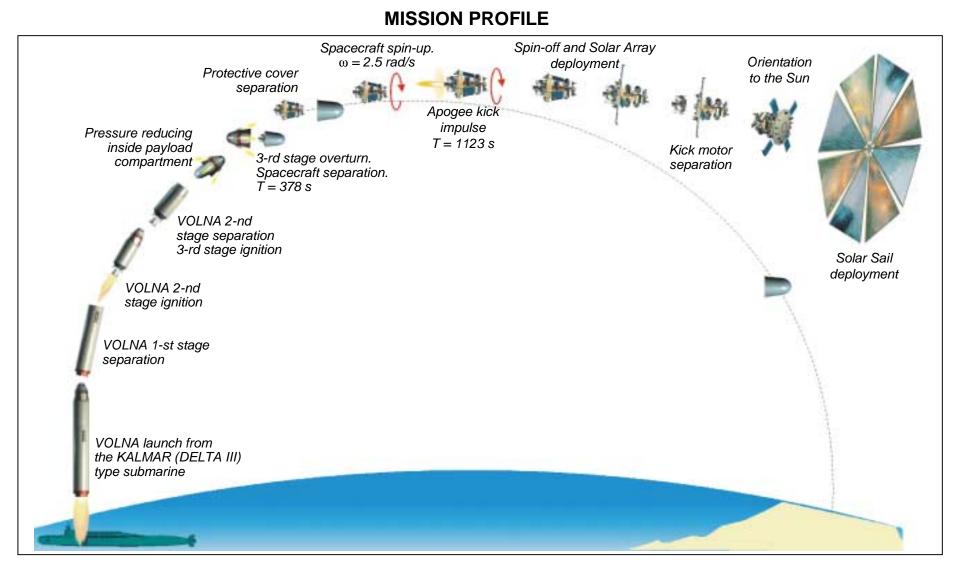

Recovery configurations

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS


1-ST PHASE – TECHNOLOGICAL EXPERIMENT

SPACECRAFT COMPOSITION

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS


2-ND PHASE – DEMONSTRATION EXPERIMENT

Flight configuration

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

2-ND PHASE – DEMONSTRATION EXPERIMENT

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

2-ND PHASE – DEMONSTRATION EXPERIMENT

SPACECRAFT BASIC FEATURES

Parameter	Value
Mass:	
 spacecraft mass, kg 	40
 Solar Sail mass, kg 	9.6
mass of container with the deployment system, kg	32.0
Solar Sail total surface area, m ²	600
Solar sail optical characteristics:	
 reflection coefficient 	0.86
 absorption coefficient 	0.14
pass coefficient	0.005
radiation value	0.04
The rate of transmission of telemetry information, kbit/s	1 ÷ 16
Power characteristics:	
 solar array square, m² 	0.4
buffer battery capacity, À.h	3.3

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

SOLAR SAIL TESTS

CHECK OF DEPLOYMENT OF THE SOLAR SAIL BLADE

BABAKIN SCIENCE & RESEARCH CENTER SPACE RESEARCH INSTITUTE RAS

SOLAR SAIL PROJECT

SOLAR SAIL TESTS

DEPLOYMENT TEST WITH MODELING OF ZERO-GRAVITY CONDITIONS

