8.Mar.2002 EW2002@Nagoya

Electron identification and shower analysis in ECC

T.Toshito (Nagoya Univ.)

Test experiment at CERN PS in May 1999 2GeV/c

Scanned at Nagoya

To achieve low background emulsion plates are used as doublet.

2GeV/c 2events 8GeV/c 4events

More statistics are required!

Test experiment at CERN PS in May 2001

P = 2 and 4 GeV/c e enriched π - beam

Interesting energy region for OPERA

- electron identification
- Analysis of cascade shower

To achieve low background ~ 1 tracks/mm²

- Fuji-emulsions stored for about 2 month are refreshed at Nagoya Real erasing
- Packed in transportation from Nagoya to CERN

• Developed soon after the beam exposure

Emulsion plates are used as singlet.

Beam exposure (May 17th 2000)

 High density (~10³/cm²) run to study e/π identification with high statistics
 r(e)~60%(2GeV/c),~30%(4GeV/c) 100~300electron
 Low density (~ a few 10²/cm²) run to study cascade shower in low background condition r(e)~10%(2GeV/c),~2%(4GeV/c) ~10electron

Net Scan by UTS at Nagoya

High density Oct. 2000 (one week)
(1cm × 1cm) × 1 beam spot × 27 plates

Low density Dec. 2000 (one month)
 (1cm × 1cm) × 7 beam spots × 27 plates

Tracking in ECC by two kind of configuration

Only Em

Cosmic-ray In-flight ~300tracks/cm² Isotropic

Beam at CERN ~300tracks/cm² Parallel Em+Pb...

e/ π identification (High density)

electron

Shower detection

$$E_e(z) = E_0 e^{-\tilde{X}_0}$$

 $X_0=5.6$ mm in lead

π

$$E_{\pi}(z) = E_0$$

 $\lambda_{int} = 170 \text{mm}$ in lead

 χ^2 analysis to measure energy variation

 $\Delta \chi^2 \equiv \chi_e^2 - \chi_\pi^2$: separator

$$\chi_{e,\pi}^{2} \equiv \sum_{i=1}^{N-1} \frac{\{(\Delta \theta_{x}(i) - \Delta \Theta_{e,\pi}(i)) / \Delta \Theta_{e,\pi}(i)\}^{2} + \{(\Delta \theta_{y}(i) - \Delta \Theta_{e,\pi}(i)) / \Delta \Theta_{e,\pi}(i)\}^{2}}{2(N-1)}$$

$$\Delta \Theta_{e,\pi}(i) \equiv \sqrt{\left(\frac{13.6(MeV/c)}{p_{e,\pi}(z)} \sqrt{d/X_{0}}\right)^{2} + (\sqrt{2}\delta\theta)^{2}} \qquad E_{e}(z) = E_{0}e^{-\frac{z}{X_{0}}}$$

$$E_{\pi}(z) = E_{0}$$
In practical experiments incident momentum are unknown, so E_{0} is treated as a free parameter to minimize chi-square

Track following of low momentum track and detection of shower track

Results of track following

beam momentum	2GeV/c	4GeV/c	
too short (2,3 plates)	16	1	
stopped with shower	126	65	→electron-like
punch through	138	194	→ χ^2 analysis
stopped without shower	202	106	• χ^2 analysis
Total incident beam			
in fiducial area	482	366	

Momentum measurement by multiple coulomb scattering for punch through tracks

26% error

29% error

Mixture of electron interacted π

Data and MC agree very well

e-like : shower + negative chi-square 278 events 2GeV/c 126 events 4GeV/c According to MC Efficiency 88% mis-id Prob. 6% @2GeV/c Efficiency 91% mis-id Prob. 4% @4GeV/c

Comparison with cherenkov counter

 e/π ratio

Installed in the upstream of ECC to monitor e/π ratio.

onsistent

	2GeV/c	4GeV/c
ECC	1.42 ± 0.17	0.41 ± 0.05
cherenkov	1.46 ± 0.11	0.32 ± 0.03

Data and MC agree very well in $\Delta \chi^2$.

e/ π ratio measured by ECC and cherenkov counter agree very much.

Performance of electron identification in ECC is well understood based on high statistics experimental data.

next

Low density run to study cascade shower

Analysis of cascade shower (Low density)

14 electron events @2GeV/c
14 electron events @4GeV/c
detected in low density sample
Detection efficiency is estimated as ~ 95%.
Contamination of π is estimated as ~ 2 events at most.
Energy reconstruction

by counting track segments

Counting track segments in horn

Estimation of background

At random volume

Track segments from another electron and interaction are seen.

Random background ~1track/mm²

Summary

• electron identification 278 e-like events @ 2GeV 126 e-like events @ 4GeV Efficiency ~90% mis-id Prob. ~5% • Analysis of cascade shower 14 electrons (a) 2GeV ΔE 0.4 E $\sim \sqrt{E(GeV)}$ 14 electrons (a) 4GeV (a) a few GeV E^{∞} (number of segments) These performances can be improved Refresh in the underground in lower background condition. Lower track density