Toho Univ. Graduate school of science Takeru Aomi

8th. March 2002

Contents

- * Motivation
- * Emulsion Spectrometer
- * Momentum calculation
- * Beam exposure
- * Scanning
- * Summary

Motivation

We have developed an emulsion spectrometer using a permanent magnet. Electric charge determination and momentum measurement by the magnetic field.

- Advantage -
 - * No electric power needed
 - * Compact

Beam exposure has been performed

at KEK - High Energy Acceleration Research Organization -.

Permanent magnet
Sumitomo Special Metals Co., LTD.
NEOMAX (Nd₂Fe₁₄B)

Dimensions of the magnet

- > Magnetic field strength is about 0.35 [T] at center.
- > Emulsion stack is inside.

Emulsion stack

> Emulsion 19	plates (OPERA film)
Size	$:9 \text{ cm} \times 9 \text{ cm}$
Thickness	: 42 [μ m] emulsion (both sides) ,200 [μ m] base
\mathbf{X}_{0}	: 5.5 [cm] (emulsion), 31 [cm] (base)
x / X ₀	: 2.1×10^{-3} / plate

> Spacer (AIREX) 18 plates

Size	$:9 \text{ cm} \times 9 \text{ cm}$	
------	-------------------------------------	--

Material : poly ether imide (PEI)

Density : 0.08 [g/cm³]

Thickness : 1.0 [cm]

- X₀ : 515 [cm]
- x / X_0 : 1.9 × 10⁻³ / plate

Momentum calculation

• Momentum is calculated from bend of particles by magnetic field.

Beam exposure

•Beam line

KEK - high energy accelerator research organization -

East counter Hall, $\pi 2$ beam line

- •Momentum -4.0,-2.0,-1.0,+2.0,+1.0 [GeV/c] pions
- •Incident angle was changed for each momentum.

Beam exposure

exposure	momentum[GeV/c]	magnetic field [T]	angle y [rad]	angle z [rad]
1	-4.0	0.00	0.000	0.220
2	+1.0	0.35	0.200	0.000
3	+2.0	0.35	0.100	0.000
4	-4.0	0.35	0.000	0.000
5	-2.0	0.35	-0.100	0.000
6	-1.0	0.35	-0.200	0.000
7	-4.0	0.00	0.000	-0.220

Scanning

- Alignment
 - 1. General scan using UTS at four points in an emulsion plate.
 - 2. Beam center is picked up.

Rotation, x-shift, and y, z-shift are adjusted.

At present, the work is in progress.

Scanning

Beam profile

Scanning

az v.s. ay

- 4 GeV/c pion beam $\sigma = 0.015$ [rad] 2 σ out \rightarrow 2621 [track
 - $3\sigma \text{ cut} \rightarrow 3621 \text{ [tracks]}$

density = 1,0319 [tracks $/ \text{ cm}^2$]

Conclusion

- We developed emulsion spectrometer using permanent magnet, and performed beam exposure at KEK.
- Alignment of emulsion plates is performed.
- The momentum will be measured.