Momentum measurement in emulsion by the MCS (angle method)

> *Giovanni De Lellis University of Naples*

- Test-beam exposure
- Emulsion analysis
- Momentum measurement (MCS: angle method)
- Results

Test-beam exposure

CERN-PS T9 experimental area (November 2000)

significant electron contamination
~5X⁰ absorber applied before the last focusing magnet

e contamination at the per-mill level

Fig 4. Percentage of e in a negative beam calculated in Ref. 5 (zero degree production angle).

MCS brick exposure

- 40 compact cells with FOMOS emulsions (60/185/60) prepared at T9 PS
- exposed to 2, 3, 4, 5 GeV π^-

Aim

- prove the feasibility of the angular method
- measure $\Delta p/p = f(p)$

Emulsion quality monitoring

Sensitivity: ~ 30 grains/100 μ m Fog density: ~ 8 grains/(10 μ m)³

P(GeV)	$\delta(tr/mm^2)$ nominal	$\theta_1 \; (\mathrm{mrad})$	$\theta_2 \; (\mathrm{mrad})$	$\delta(tr/mm^2)$ measured
2	5	+100	0	2.5
3	10	-100	0	6.2
4	20	0	-100	13.8
5	25	0	+100	13.0
5	4	0	+200	5.0

Distortion effect

25 mrad allowance

50 *mrad* allowance

Emulsion analysis

- Half brick used (19 ES)
- Plate by plate quality monitoring
- Define a common "good quality region" (red box in the previous plots ~ 3cm²)
- Make a general angle scanning on the first plate (~ 17000 tracks)
- Use measured angles as predictions for next plate scanning
- We end up with track (i.e.19 aligned segments)

		P (GeV)
ſ	1296	5
2/138 tracks	201	2
2730 tracks	422	3
l	519	4

Getting the resolution

RMS values for each $\Delta cell = k$

 $\Delta \theta_{ik} = \theta_{i+k} - \theta_i$ $< \theta_{obs}^2 >_k = \sum_i (\Delta \theta_{ik})^2 / N$

 $(x) = \sqrt{P_2^2 + (13.6)^2 (x/5.6)/P_1^2}$

 $P_1 = momentum = 2.0 \text{ GeV}$ $P_2/\sqrt{2} = resolution = 3.0 \text{ mrad}$

Planarity check

2.0 mrad

2.5 mrad

Average trajectory of several hundred tracks

Angle method

How to get the momentum error from data: an example

$$\theta^{n} = \sqrt{\langle \theta^{2}_{obs} \rangle / \theta_{MCS}}$$

Algorithm

Use $P_Y \& P_Z$ to generate 100 simulated data and apply the above procedure to estimate P_Y and P_Z fluctuations

$$σ ϑ_Y & σϑ_Z$$

 $P \pm \sigma P$ = weighted average and error

Scattering as a function of depth

Momentum distribution

 $P(\theta)$ gaussian

 $\Delta p/p = \Delta \theta/\theta$

 $P \propto 1/\theta \rightarrow dP \propto d\theta/\theta^2$

 $P(x) = \frac{a_0 \exp(-(1/x - 1/a_1)^2/a_2^2)}{x^2}$

Momentum resolution @ 2 GeV

$$P = 2.1^{+0.9}_{-0.5}$$

$$\Delta p/p = 25\%$$

P (GeV)

Momentum resolution @ 3 GeV

