Development of Nuclear Emulsion for Cosmic Ray Radiography -Thick supporting base type emulsion-

Cosmic-Ray Radiography

Cosmic-Ray Radiography

Structure of Nuclear Emulsion

Emulsion Cloud Chamber(=ECC)

Detection Principle of Nuclear Emulsion

Definition of Angular Accuracy

$$\delta l = \sqrt{2} \delta z$$

Base Candidates

	<u> </u>						<u> </u>				

Improvement of Angular Accuracy Test 1

Angular Accuracy of Vertical Tracks

 $tan\theta = 0.0 \pm 0.02$

$$\delta \tan \theta_x = \frac{\sqrt{2}}{l} \sqrt{\delta x^2 + \delta z^2 \times (\tan \theta_x)^2}$$

$$tan\theta = 0.0$$

$$\delta \tan \theta_x = 0$$

Angular Accuracy of Vertical Tracks 175μmPS · 500μmCOP Emulsions

Improvement of Angular Accuracy Test 2

 $[tan\theta_x]$

Angular Accuracy of Vertical Tracks 175μmPS · 300μmPC Emulsions

Summary of Angular Accuracy of Vertical Tracks

Base thick []

Angle Dependence of Angular Accuracy Test

$$tan\theta_x = 0.0, 0.2, 0.4 \dots 1.0$$
$$tan\theta_y = 0.0$$
$$\pm tan\theta = 0.05$$

 $[tan \theta_x]$

$$tan\theta_x = 0.0, 0.1, 0.2 \dots 1.0$$
$$tan\theta_y = 0.0$$
$$\pm tan\theta = 0.05$$

Angle Dependence of Angular Accuracy Test Result, Consideration

Base Candidates (New Beam Test Samples)

$5.0 \sim 8.3 \times 10^{-5}$	$5.0 \sim 9.0 \times 10^{-5}$	7×10^{-5}	6.8×10^{-5}	7.2×10^{-6}

Conclusion

- ${\color{black}\bullet}$

- - lacksquare

角度精度の角度依存性評価

屈折率・副屈折率の違いによる見え方の差

散乱効果による画像のボケ

溶鉄10mを貫通したミューオンの散乱による画像ボケ

