Study of tau-neutrino production with emulsion particle detectors

Tomoko Ariga for the DsTau collaboration

Kyushu University

The DsTau project at the CERN SPS

Physics motivations

- Tau neutrinos are among the less known particles in the Standard Model
- Large systematic uncertainty in the cross section measurement
- Precision measurement of CC cross section

Test of lepton universality in CC interactions

(search for new physics effects)

Also important for future neutrino experiments, e.g. DUNE, Hyper-K

• DsTau goals

- Measurement of production
 - Reduce systematic uncertainty ~50% ~10% Re-evaluation of the cross section from DONUT Essential input for future experiment, e.g. SHiP

 $\begin{array}{l} \nu_{\tau} \text{ source:} \\ D_s^{+} \rightarrow \tau^+ \nu_{\tau} \rightarrow X \ \nu_{\tau} \ \overline{\nu}_{\tau} \\ D_s^{-} \rightarrow \tau^- \ \overline{\nu}_{\tau} \rightarrow X \ \overline{\nu}_{\tau} \ \nu_{\tau} \end{array}$

Methodology

- Study production by measuring the $D_s \rightarrow \tau$ decays following highenergy proton interactions
 - source: $D_s \to \tau \nu_\tau \to \nu_\tau \bar{\nu}_\tau X$
 - Detect double-kink + another decay topology within a few mm
 - Technical challenge to detect small kink angle of $D_s \rightarrow \tau$ decays
 - Measure the D_s differential production cross section and decay branching ratio to inclusively improve the flux prediction

	< FL $>$	$>$ $< heta_{kink}>$	
De	<u>3.3 mm</u>	n 7 mrad	_
100	mrad $ au$	2.0 mm	:

Towards the detection of a few mrad kink topology Emulsion detectors: 3D tracking device with 50 nm precision

AgBr crystal 10¹⁴ crystals in a film

Module structure for $D_s \rightarrow \tau \rightarrow X$ measurement

How many interactions to be analyzed?

To detect 1000 $D_s ~~\tau$ events,

- 2.3x10⁸ proton interactions to be analyzed
 - Efficiency 20%
 - BR($D_s = 5.54\%$ (PDG2016)
 - D_s production cross section in tungsten target ~4x10⁻⁴ @400GeV
- 4.6x10⁹ pot needed
 - 0.5 mm tungsten x 10 units = 0.05 λ_{int}
- To expose 4.6x10⁹ pot with the density 10⁵ tracks/cm² detector surface 4.6 m² (368 modules, film surface 593 m²)

With the preliminary criteria, Signal probability 5×10^{-6} /proton int. Background 9×10^{-9} /proton int.

Two step analysis for double kink search

- High speed scanning to select

 X + partner-charm decays
 ~100 mrad)
- 2. Precision measurement to detect
 - D_s -> decay (a few mrad)

A fast scanning system in Nagoya: Speed 0.5 m²/h/layer Angular resolution ~2 mrad

> A nano-precision measurements in Bern Angular resolution ~0.3 mrad

D_s momentum reconstruction

- The peculiar decay topology is rich in kinematical information
- D_s momentum reconstruction only by topological variables

FL: flight length : kink angle

- A Neural Network with 4 variables was trained with MC events
- Momentum resolution for τ 1 prong decays $\Delta p/p = 18\%$

Expected performance

 v_{τ} CC cross section measured by DONUT as a function of the parameter n

Phenomenological formula conventionally used to describe charmed particles

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto \frac{(1-|x_F|)^n}{|\text{ongitudinal}} \exp(-bp_T^2)$$

dependence dependence

Systematic uncertainties	DONUT	With
		DsTau
D _s differential cross section	~0.50	~0.10
(x _F dependence)		
Charm production cross section	0.17	
Decay branching ratio	0.23	0.00
	(0.04)	~0.03
Target atomic mass effects	0.14	

• To reach ~10% precision on the cross section, the parameter *n* has to be measured at a precision of ~0.4

Status of the project

• Letter of Intent submitted to the CERN-SPSC in Feb. 2016

CERN-SPSC-2017-029 / SPSC-P-354 29/08/2017

- Test beam campaign in Nov. 2016, May 2017
- Proposal submitted in Aug. 2017
 - Physics run in 2018, 2021-2022

Study of ν_{τ} production by measuring $D_s \rightarrow \tau$ events in 400 GeV proton interactions: Test of lepton universality in neutrino charged-current interactions

S. Aoki¹, A. Ariga², T. Ariga², K. Kodama³, M. Nakamura⁴, O. Sato⁴ ¹Kobe University ²AEC/LIIEP. University of Bern

³Aichi University of Education ⁴F-lab, Nagova University Experiment Proposal

Study of tau-neutrino production at the CERN SPS

S. Aoki¹, A. Ariga², T. Ariga^{2,3,*}, E. Firu⁴, T. Fukuda⁵,

Y. Gornushkin⁶, A. M. Guler⁷, M. Haiduc⁴, K. Kodama⁸,

M. A. Korkmaz⁷, U. Kose⁹, M. Nakamura⁵, T. Nakano⁵,

A. T. Neagu⁴, H. Rokujo⁵, O. Sato⁵, S. Vasina⁶,

M. Vladymyrov², M. Yoshimoto¹⁰

Beam tests in 2016, 2017

- Nov. 2016 H4 beamline
 - Optimization of the exposure scheme and the setup
 - Proof of principle (1/40 scale of the full design)
- May 2017 H2 beamline
 - Updated exposure sequence (intensity driven synchronization between beam intensity and target mover)
 - Tests to improve angular resolution

Detector setup at the H4 beamline

Detector setup at the H4 beamline

Vertex reconstruction in 3D

Decay topology search

A volume of 6 cm x 6 cm x 10 films was preliminary analyzed About 30,000 proton interactions 150 events with possible decay topology

High precision measurement

- Intrinsic resolution of each grain = 50 nm
 - Two grains on top and bottom of 200 μm base ~~0.35~mrad
 - Discrimination of 2 mrad at 4 level
- A new system with piezo-based Z axis under development
- Angular measurement reproducibility of 0.15 mrad was achieved

Piezo objective scanner

 $\sigma_x = 50$ nm

200

base

m

 Angular alignment between films to be done by using dense 400 GeV proton tracks

Summary and prospects

- The DsTau project proposes to study tau-neutrino production in 400 GeV proton interactions
 - Prerequisite for measuring the v_{τ} charged-current cross section test of lepton universality in v_{τ} scattering
 - Experiment proposal submitted to the CERN SPSC in Aug. 2017 (SPSC-P-354)
- Aims to detect 1,000 $D_s \rightarrow \tau$ decays in 2.3 10⁸ proton interactions in

tungsten target

- Emulsion detectors with nano-precision readout
- ~10⁵ charm production as by-products